Complex Numbers - ( 1 - 6 )
Polar Form - ( 7 - 13 )
Complex Functions - ( 14 - 14 )
Limit - ( 15 - 15 )
Analytic Function - ( 16 - 16 )
Cauchy-Riemann Equation - ( 17 - 22 )
Laplace Equation - ( 23 - 28 )
Milne Thomson Method - ( 29 - 35 )
Complex Integration - ( 36 - 61 )
Green's Theorum - ( 62 - 63 )
Cauchy's Integral Formula - ( 64 - 76 )
Complex Power Series - ( 77 - 81 )
Taylor and Maclaurin Series - ( 82 - 90 )
Laurent Series - ( 91 - 104 )
Singularity - ( 105 - 109 )
Residue Integration - ( 110 - 117 )
Evaluation of real integrals by R.I - ( 118 - 123 )
Fourier Integrals - ( 124 - 135 )
Cauchy Principal Value Theorum - ( 136 - 138 )
Numerical Analysis - ( 139 - 139 )
Error and Rounding-off - ( 140 - 145 )
Interpolation - ( 146 - 150 )
Newton's Forward Interpolation Formula - ( 151 - 152 )
Newton's Backward Interpolation Formula - ( 153 - 157 )
Newton's Divided Difference Formula - ( 158 - 162 )
Lagrange's Interpolation formula - ( 163 - 165 )
Inverse Interpolation - ( 166 - 167 )
Spline Interpolation - ( 168 - 170 )
Numerical Integration - ( 171 - 177 )
Numerical Solution of ODE - ( 178 - 178 )
Euler's Method - ( 179 - 181 )
Improved Euler's Method - ( 182 - 185 )
Modified Euler's Method - ( 186 - 190 )
Runge-Kutta Method - ( 191 - 194 )
Multistep Method - ( 195 - 196 )
Milne's Simpson Formula - ( 197 - 197 )
Probability and Statistics - ( 198 - 204 )
Conditional Probability - ( 205 - 205 )
Multiplication Theorum - ( 206 - 208 )
Baye's theorum - ( 209 - 212 )
Random Variables and Probability Distributions - ( 213 - 222 )
Conditions for Bionomial distribution - ( 223 - 226 )
Poisson Distribution - ( 227 - 227 )
M3 special notes
Reviewed by Admin
on
October 24, 2019
Rating:
No comments: